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Non-Commutative Algebras
and Quantum Structures

Anatolij Dvurečenskij1 and Thomas Vetterlein2

We present a survey on pseudo-effect algebras and pseudo MV-algebras, which gener-
alize effect algebras and MV-algebras by dropping the assumption on commutativity.
A non-commutative logic is nowadays used even in programming languages. We show
when a pseudo-effect algebra E is an interval in a unital po-group. This is possible,
e.g. if E satisfies a Riesz-type decomposition property, i.e. another kind of distributivity
with respect to addition. Every pseudo MV-algebra is an interval in a unital �-group.
We study a case when compatibility can be expressed by a pseudo MV-structure, i.e.
when E can be covered by blocks being pseudo MV-algebras. Finally, we study the
state space of such structures.

KEY WORDS: pseudo-effect algebra; pseudo MV-algebras; po-group; unital po-
group; unital �-group; compatibility; block; state; extremal state.

1. INTRODUCTION

Recently we have commemorated 100 years since the Second International
Congress of Mathematics, which was held in Paris, 1900, and at which D. Hilbert
addressed his historical lecture on open mathematical problems. His program sub-
stantially influenced the development of mathematics in the 20th century, and also
nowadays, on the doorstep to the third millennium, we can say that Hilbert’s pro-
gram is still influencing and many new generations of mathematicians will have
to do with this program.

His sixth problem is lying among mathematics and physics and concerns
mathematical foundations of quantum mechanics and it says: Find a few physical
axioms which, similar to the axioms of geometry, can describe a theory for a class
of physical events that is as large as possible.

The development of this problem had many highlights. The situation in
physics and in mathematics was very interesting in 1930s. Kolmogorov published
in 1933 his fundamental work Grundbegriffe der Wahscheinlichkeitsrechnung
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(Kolmogorov, 1933), where he presented axiomatical foundations of probabil-
ity theory. This model is based on a σ -algebra of subsets, or a Boolean σ -algebra,
which represents events describing a system under study. But as it follows, e.g. from
the Heisenberg uncertainty principle, this model does not describe a propositional
system of quantum mechanics.

In 1936, Birkhoff and von Neumann published their influencing article The
logic of quantum mechanics (Birkhoff and von Neumann, 1936), where they pro-
pose a more general propositional structure for describing the events of quantum
mechanics. Since that date we have fixed a birth of a new theory, quantum logics
theory.

The boom of quantum logics started in 1960s after the fundamental paper
of Gleason published in 1957, describing states on the most important quantum
logic, the logic L(H ), the system of all closed subspaces of a Hilbert space H , and
after the first monograph on this topics published by Varadarajan (1968).

After that, there appeared a whole system of structures dedicated to math-
ematical foundations of quantum mechanics: orthomodular lattices, orthomodu-
lar posets, σ -quantum logics, etc. and also orthoalgebras by Foulis and Randall
(1972). All these structures have an important property that they try to describe a
way how to combine new events, disjunction of two propositions. They suggest
to do so only when these are mutually exclusive. In addition, the second impor-
tant feature is that they describe only no–yes events, i.e. using only two-valued
logic.

A dramatic moment appeared in the beginning of 1990s when two former
students of the first author, Kôpka and Chovanec (1994), introduced a new algebraic
structure, difference posets or, abbreviated, D-posets, which reflects both algebraic
and fuzzy ideas for a propositional system. Their primary notion was a difference
of two comparative events. Then Foulis and Bennett (1993) gave an equivalent
partial algebraic structure, effect algebras, with addition of mutually exclusive
events as a primary notion. It was recognized that these former structures are both
equivalent to the weak orthoalgebras introduced by Giuntini and Greuling (1989).
The most important example is the system E(H ) of effects of a Hilbert space,
i.e. of all Hermitian operators among the null and identity operator. The second
important example of effect algebras are MV-algebras which entered mathematics
in 1950s by Chang (1958) as a many-valued reasoning. MV-algebras correspond
to Boolean algebras in the framework of effect algebras, and they describe a “fuzzy
classical situation” because recently Riečanová (2000) showed that every lattice-
ordered effect algebra can be covered by blocks, maximal systems of compatible
elements, and these blocks are MV-subalgebras.

Another important feature of effect algebras is that they appear as intervals
in partially ordered groups with strong units.3 For example, E(H ) is an interval

3 A positive element u of a po-group G is said to be a strong unit for G if, for any g ∈ G, there is an
integer n ≥ 1 such that −nu ≤ g ≤ nu.
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of the po-group B(H ), the system of all Hermitian operators of a Hilbert space H
with the strong unit I , the identity operator of H .

Going back to those quantum structures, we see that there appeared an original
idea of Boole (1967), who many decades before said that what we need to measure,
are only pairs of events which are roughly speaking “mutually exclusive.”

Today it is clear that phenomena similar to quantum mechanics, i.e. situations
when it is not possible to use Kolmogorov probability models, do not only appear
in quantum mechanics. Similar events we can observe in psychology, in the work of
the human brain (Stern, 1994), in big computer systems or in economical systems
(Dvurečenskij and Graziano, in press).

All mentioned quantum structures, nevertheless their “non-commutativity”,
they are commutative, i.e. the partial operation + is commutative, i.e. a + b =
b + a. However, a non-commutative reasoning can be met in the everyday life
very often. Many human processes are depending on the order of variables: In
clinical medicine, on behalf of the transplantation of human organs, an experiment
was performed in which the same two questions have been posed to two groups
of interviewed people: (1) Do you agree to dedicate your organs for medical
transplantation after your death? (2) Do you agree to accept organs of a donor in
the case of your need? When the order of questions was changed in the second
group, the number of positive answers to be a donor here was more higher than
for the first group.

Today there exists even a programming language (Baudot, 2000) based on a
non-commutative logic.

Clearly also quantum mechanical measurements are in general non-commuta-
tive; the result of some experiment may depend on the order of the measurements.
Consider, for example, a beam of particles which are prepared in a certain state,
and which are sent through a sequence of three polarizing filters F1, F2, F3. It is
well known that the order of the filters makes in general a difference. For example,
let the filter be polarizing in planes perpendicular to the particle beam, such that
F1 polarizes vertically, F2 horizontally and F3 at a 45◦ angle. If we place the filters
in the order F1, F2, F3, then no particles are detected, but in the order F1, F3, F2,
particles are detected; the difference is due to quantum interference.

Such phenomena are in literature also presented as sequential conjunctions
or sequentially independent effects by Gudder and Nagy (2002) or sequential
probability models by Foulis (2002).

Nowadays a whole family of non-commutative generalizations of MV-
algebras have appeared: pseudo MV-algebras of Georgescu and Iorgulascu (2001),
or equivalently, generalized MV-algebras of Rachůnek (2002), pseudo BL-algebras
(Di Nola et al., 2002). For them the author (Dvurečenskij, 2002) proved that
any pseudo MV-algebra is always an interval in a unital �-group (G, u) with a
strong unit u. In addition, pseudo-effect algebras were introduced in (Dvurečenskij
and Vetterlein, 2001a,b). Such algebras are sometimes also intervals in unital
po-groups.
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The aim of the present paper is to show new ideas using this kind of non-
commutativity. The paper is organized as follows. In the second section, we de-
scribe pseudo-effect algebras and we show when a pseudo-effect describes a whole
po-group, in which it is an interval. In the third section, we give elements of pseudo
MV-algebras theory; such algebras are always intervals in unital �-groups. In the
fourth section, we show how compatibility is connected with blocks and these with
pseudo MV-algebras.

The state space of pseudo MV-algebras and pseudo-effect algebras are pre-
sented in the fifth section.

2. PSEUDO-EFFECT ALGEBRAS

A partial algebra (E ; +, 0, 1), where + is a partial binary operation and 0 and
1 are constants, is called a pseudo-effect algebra (Dvurečenskij and Vetterlein,
2001a,b) if, for all a, b, c ∈ E , the following holds

(i) a + b and (a + b) + c exist if and only if b + c and a + (b + c) exist,
and in this case (a + b) + c = a + (b + c).

(ii) for any a ∈ E , there is exactly one d ∈ E and exactly one e ∈ E such
that a + d = e + a = 1;

(iii) if a + b exists, there are elements d , e ∈ E such that a + b = d + a =
b + e;

(iv) if 1 + a or a + 1 exists, then a = 0.

If we define a ≤ b iff there exists an element c ∈ E such that a + c = b, then
≤ is a partial ordering on E such that 0 ≤ a ≤ 1 for any a ∈ E . If E is a lattice
under ≤, we say that E is a lattice pseudo-effect algebra. If + is commutative, i.e.
if a + b = b + a, for all a, b ∈ E such that b + a ∈ E , E is said to be an effect
algebra.

Let E be a pseudo-effect algebra. Let / , \ be two partial binary operations
on E such that, for a, b ∈ E , a / b is defined iff b \ a is defined iff a ≤ b, and such
that in this case we have

(b \ a) + a = a + (a / b) = b. (1)

Then

a = (b \ a) / b = b \ (a / b). (2)

If a ≤ b ≤ c, then

(c \ a) \ (b \ a) = c \ b,

(a / b) / (a / c) = b / c,

(c \ b) / (c \ a) = b \ a,

(a / c) \ (b / c) = a / b.
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Let E = (E ; +, 0, 1) be a pseudo-effect algebra. We define a− := 1 \ a and
a∼ := a / 1 for any a ∈ E .

For example if (G, u) is a unital (not necessary Abelian) po-group with a
strong unit u (sometimes it is sufficient to assume only u > 0), and

�(G, u) := [0, u] = {g ∈ G : 0 ≤ g ≤ u},
then (�(G, u); +, 0, u) is a pseudo-effect algebra if we restrict the group addition +
to �(G, u). A pseudo-effect algebra (E ; +, 0, 1) is said to be an interval pseudo-
effect algebra if there exists a unital po-group (G, u) such that (E ; +, 0, 1) is
isomorphic with (�(G, u); +, 0, u).

For example, E(H ) = �(B(H ), I ) is an interval effect algebra.
The conditions when a pseudo-effect algebra is an interval were studied in

(Dvurečenskij and Vetterlein, 2001a,b). For them we need the following general-
izations of the Riesz decomposition property:

(a) For a, b ∈ E , we write a com b to mean that for all a1 ≤ a and b1 ≤ b,
a1 and b1 commute.

(b) We say that E fulfils the Riesz interpolation property (RIP) for short, if
for any a1, a2, b1, b2 ∈ E such that a1, a2 ≤ b1, b2 there is a c ∈ E such
that a1, a2 ≤ c ≤ b1, b2.

(c) We say that E fulfils the weak Riesz decomposition property (RDP0) for
short, if for any a, b1, b2 ∈ E such that a ≤ b1 + b2 there are d1, d2 ∈ E
such that d1 ≤ b1, d2 ≤ b2 and a = d1 + d2.

(d) We say that E fulfils the Riesz decomposition property (RDP) for short, if
for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2 there are d1, d2, d3,
d4 ∈ E such that d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 =
b2.

(e) We say that E fulfils the commutational Riesz decomposition property
(RDP1) for short, if for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 +
b2 there are d1, d2, d3, d4 ∈ E such that (i) d1 + d2 = a1, d3 + d4 = a2,
d1 + d3 = b1, d2 + d4 = b2, and (ii) d2 com d3.

(f) We say that E fulfils the strong Riesz decomposition property (RDP2) for
short, if for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2 there are
d1, d2, d3, d4 ∈ E such that (i) d1 + d2 = a1, d3 + d4 = a2, d1 + d3 =
b1, d2 + d4 = b2, and (ii) d2 ∧ d3 = 0.

We notify that the Riesz-type decomposition properties are roughly speaking
another kind of distributivity; they are connected with the refinements of decom-
positions of the unity.

We have the implications

(RDP2) ⇒ (RDP1) ⇒ (RDP) ⇒ (RDP0) ⇒ (RIP),

and the opposite ones can fail.
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If the positive cone G+ of a po-group G satisfies analogical conditions, we
say that G satisfies the corresponding type of the Riesz decomposition property.
The following important representation theorem for pseudo-effect algebras says
that every pseudo-effect algebra with (RDP1) is an interval.

Theorem 2.1. (Dvurečenskij and Vetterlein, 2001b) Let (E ; +, 0, 1) be a
pseudo-effect algebra fulfilling (RDP1). Then there is a unique, up to isomor-
phism of po-groups, unital po-group (G, u) satisfying (RDP1) such that (E ; +, 0, 1)
is isomorphic with (�(G, u); +, 0, u). Moreover, if φ is a pseudo-effect algebra
isomorphism from E onto �(G, u), and if K is any po-group with a mapping
ψ : E → K + which preserves + and 0, then there is a unique group homomor-
phism h : G → K such that ψ(a) = h(φ(a)) for any a ∈ E .

3. PSEUDO MV-ALGEBRAS

MV-algebras entered mathematics by Chang (1958) in the middle of 1950s.
They are a generalization of Boolean algebras to model multi-valued reasoning.
We recall that according to a famous theorem of Mundici (Cignoli et al., 2000),
every MV-algebra M = (M ; ⊕,∗ , 0, 1) is an interval in an Abelian lattice-ordered
group (G, u), that is, M ∼= �(G, u), where 0 = 0, 1 = u, a ⊕ b = (a + b) ∧ u,
and a∗ = u − a for all a, b ∈ M. Also in the Hilbert space formalism of quantum
mechanics, we can meet MV-algebras which are not Boolean algebras. For exam-
ple, if M is a maximal system of mutually commuting operators from E(H ), then
M can be converted into an MV-algebra (Cattaneo et al., 2000). In such a case,
there is a Hermitian operator A0 ∈ M and a system of Borel measurable functions
{ f A : f A : [0, 1] → [0, 1], A ∈ M} such that A = f A(A0) for any A ∈ M ; we
define the MV-operations via A ⊕ B := ( f A ⊕ fB)(A0), where ( f A ⊕ fB)(t) :=
min{ f A(t) + fB(t), 1}, t ∈ [0, 1], and A∗ = I − A.

We recall that according to Georgescu and Iorgulescu (2001), a pseudo MV-
algebra is an algebra (M ; ⊕,− ,∼ , 0, 1) of type (2, 1, 1, 0, 0) such that the following
axioms hold for all x , y, z ∈ M with an additional binary operation � defined via

y � x = (x− ⊕ y−)∼

(A1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;
(A2) x ⊕ 0 = 0 ⊕ x = x ;
(A3) x ⊕ 1 = 1 ⊕ x = 1;
(A4) 1∼ = 0; 1− = 0;
(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;
(A6) x ⊕ x∼ � y = y ⊕ y∼ � x = x � y− ⊕ y = y � x− ⊕ x ;
(A7) x � (x− ⊕ y) = (x ⊕ y∼) � y;
(A8) (x−)∼ = x .
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If M is a pseudo MV-algebra, let the partial operation a + b be defined iff
a ≤ b−, and then a + b := a ⊕ b. Then (M ; +, 0, 1) is a pseudo-effect algebra,
which is a distributive lattice.

If (G, u) is a unital �-group, then (�(G, u); ⊕,− ,∼ , 0, u), where a ⊕ b :=
(a + b) ∧ u, a � b = (a − u + b) ∨ 0, and a∼ = −a + u and a− = u − a, is a
pseudo MV-algebra.

We present now two examples of pseudo MV-algebras:

Example 3.1. Let G = (Z × Z × Z; +, (0, 0, 0), ≤) be the Scrimger 2-group, i.e.

(k1, m1, n1) + (k2, m2, n2) :=
{

(m1 + k2, m2 + k1, n1 + n2), if n2 is odd

(k1 + k2, m1 + m2, n1 + n2), if n2 is even.

Then 0 = (0, 0, 0) is the neutral element, and

−(k, m, n) =
{

(−m, −k, −n), if n is odd

s(−k, −m, −n), if n is even,

and G is a non-Abelian �-group with the positive cone

G+ = Z × Z × Z
+
>0 ∪ Z

+ × Z
+ × {0},

or equivalently, (k1, m1, n1) ≤ (k2, m2, n2) iff (i) n1 < n2, or (ii) n1 = n2, k1 ≤ k2,
m1 ≤ m2.

Then

(k1, m1, n1) ∨ (k2, m2, n2) :=




(k1, m1, n1), i f n1 > n2

(k1 ∨ k2, m1 ∨ m2, n1 ∨ n2), i f n1 = n2

s(k2, m2, n2), i f n1 < n2,

and u = (1, 1, 1) is a strong unit for G. Consequently, the corresponding pseudo
MV-algebra has the form

�(G, u) = Z
+ × Z

+ × {0} ∪ Z≤1 × Z≤1 × {1},
with

(k, m, 0)− = (1 − k, 1 − m, 1),

(k, m, 0)∼ = (1 − m, 1 − k, 1),

(k, m, 1)− = (1 − m, 1 − k, 0),

(k, m, 1)∼ = (1 − k, 1 − m, 0),

and

(k1, m1, 0) ⊕ (k2, m2, 0) = (k1 + k2, m1 + m2, 0),

(k1, m1, 0) ⊕ (k2, m2, 1) = ((m1 + k2) ∧ 1, (m2 + k1) ∧ 1, 1),
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(k1, m1, 1) ⊕ (k2, m2, 0) = ((k1 + k2) ∧ 1, (m1 + m2) ∧ 1, 1),

(k1, m1, 1) ⊕ (k2, m2, 1) = (1, 1, 1).

Example 3.2. Let G be the group of all matrices of the form

A =
(

ξ α

0 1

)
,

where ξ and α are rational (or real) numbers such that ξ > 0; the group-operation
is the usual multiplication of matrices. We denote A = (ξ , α). Then A−1 =
(1/ξ , −α/ξ ), and (1, 0) is the neutral element. We define G+ := {(ξ , α) : where
(i) ξ > 1, or (ii) ξ = 1 and α ≥ 0}. Then G with the positive cone G+ is a lin-
early ordered �-group with a strong unit U = (2, 0). Define M = �(G, U ). Then
M = M1 ∪ M2 ∪ M3, where M1 = {(ξ , α) : 1 < ξ < 2}, M2 = {(2, α) : α ≤ 0},
and M3 = {(1, α) : α ≥ 0}.

The pseudo MV-algebras of the form �(G, u), where (G, u) is a unital �-
group, are prototypical in view of the following basic representation theorem
(Dvurečenskij, 2002), which generalizes the famous result of Mundici for MV-
algebras.

Theorem 3.1. If (M ; ⊕,− ,∼ , 0, 1) is a pseudo MV-algebra, then there is a
unique (up to isomorphism of �-groups) unital �-group (G, u) such that
(M ; ⊕,− ,∼ , 0, 1) ∼= (�(G, u); ⊕,− ,∼ , 0, u).

Moreover, there is a categorical equivalence among the category of pseudo
MV-algebras (whose objects are pseudo MV-algebras and morphisms are homo-
morphisms of pseudo MV-algebras) and the category of unital �-groups (whose
objects are unital �-groups (G, u) and morphisms are homomorphisms of unital
�-groups); the functor in question is given by � : (G, u) �→ �(G, u). This equiv-
alence gives a tool for a deep investigation of pseudo MV-algebras using the well-
developed theory of unital �-groups. We can formulate the following open problem:

Problem 1. In analogy of the Komori classification of MV-algebras, (Cignoli
et al., 2000), characterize all varieties of pseudo MV-algebras.

We present the following characterization of pseudo MV-algebras among
pseudo-effect algebras.

Theorem 3.2. (Dvurečenskij and Vetterlein, 2001a) Let (E ; +, 0, 1) be a pseudo-
effect algebra. The following statements are equivalent:

(i) E is lattice-ordered and satisfies (RDP0).
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(ii) E satisfies (RDP2).
(iii) E is lattice-ordered and a \ (a ∧ b) = (a ∨ b) \ b for all a, b ∈ E.
(iv) E is lattice-ordered and (E ; ⊕,− ,∼ , 0, 1) is a pseudo MV-algebra,

where a ⊕ b := a + (a∼ ∧ b), a, b ∈ E .

4. COMPATIBILITY AND BLOCKS

Orthodox quantum structures such as orthomodular latices (OML) or ortho-
modular posets (OMP) are not necessarily distributive structures. If they are, they
are Boolean algebras. So the classical quantum structure is exactly a Boolean
algebra, and it corresponds to measurements in the framework of classical me-
chanics. Otherwise, the quantum structures describe a measurement process in
the framework of quantum mechanics which the Kolmogorovian model is not
able to describe. However, in every OML or OMP it is possible to find a part
which generates a Boolean subalgebra, that is, locally classical measurements.
It can be expressed by compatibility of elements. It means, that two elements a
and b are compatible, if there are three mutually exclusive elements a1, b1, c such
that a = a1 ∨ c and b = b1 ∨ c. A well-known result from quantum logic theory
(Varadarajan, 1968), says that a maximal set of mutually compatible elements
performs a Boolean subalgebra of a quantum logic, and, in addition, the quantum
logic can be covered by blocks.

A similar result was proved by Riečanová (2000) who proved that every
lattice ordered effect algebra can be covered by blocks and each such a block is an
MV-subalgebra. This result can be extended also for pseudo-effect algebras, where
blocks are then pseudo MV-algebras. We say that two elements a and b of a pseudo-
effect algebra E are (i) compatible (and we write a ↔ b) if there are three elements
a1, b1, c ∈ E such that a = a1 + c, b = b1 + c, and a1 + b1 + c = b1 + a1 + c ∈
E ; (ii) strongly compatible (and we write a

c←→ b) if there are three elements
a1, b1, c ∈ E such that a = a1 + c, b = b1 + c, a1 + b1 + c = b1 + a1 + c ∈ E ,

and a1 ∧ b1 = 0, (iii) weakly compatible, (and we write a
w←→ b) if there exist

three elements a1, b1, c ∈ E such that a = a1 + c, b = b1 + c, and a1 + b1 + c ∈
E and b1 + a1 + c ∈ E . It is evident that (ii) implies (i) and (i) implies (iii).

If a ≤ b, then a
c←→ b (set a1 = 0, b1 = b \ a, c = a).

For example, if M is a pseudo MV-algebra, then all elements are strongly com-

patible. We note that if E is a lattice, and a
c←→ b, then elements in the correspond-

ing decompositions are uniquely determined. Namely, c = a ∧ b, a1 = a \ (a ∧ b)
and b1 = b \ (a ∧ b). Moreover, if E is a lattice-ordered pseudo-effect algebra,
then all three kinds of compatibilities coincide (Dvurečenskij and Vetterlein, 2003).
On the other hand, in (Pulmannová, 2002) it was shown that forE(H ), compatibility
and strong compatibility coincide, however, E(H ) is not a lattice (see Dvurečenskij
and Pulmannová, 2000).
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Example 4.1. Let E = {0, a, b, c, d , 1}, where the addition + is defined in the
table.

Then E is an effect algebra which is not a lattice and does not fulfill (RIP),

but all elements of E are strongly compatible and e.g. c
c←→ d and c ∨ d ∈ E but

c ∧ d �∈ E as well as a
c←→ b, a ∧ b ∈ E but a ∨ b �∈ E .

It is possible to prove the following statement from (Dvurečenskij and
Vetterlein, 2003).

Proposition 1. Let E be a lattice pseudo-effect algebra, let ai ↔ b for any i ∈ I ,
and a := ∨

i∈I ai ∈ E . Then b ↔ a and

∨
i

(ai ∧ b) =
(∨

i

ai

)
∧ b.

Let {Et }t∈T be a system of pseudo-effect algebras such that Et ∩ Es = {0, 1}
for t �= s. The set E := ⋃

t∈T Et can be organized into a pseudo-effect algebra
such that x + y is defined in E iff x , y ∈ Et for some t ∈ T and if x + y is defined
in Et , and in such a case, x + y takes the value from Et . Then E is a pseudo-
effect algebra, which is said to be a horizontal sum of the system of pseudo-effect
algebras {Et }t∈T .

A maximal set of mutually compatible elements of a pseudo-effect algebra
E is said to be a block.

For example, if E is a pseudo MV-algebra, then E is a unique block in E .
In addition, if E is a horizontal sum of a system of pseudo MV-algebras {Et }t∈T ,
then E is not necessarily a pseudo MV-algebra, and {Et }t∈T is the system of all
blocks in E .

Riečanová has proved that every block in a lattice-ordered effect algebra is
an MV-algebra. However, this is not true if E is a lattice-ordered pseudo-effect
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algebra, as it was shown in (Dvurečenskij and Vetterlein, 2003). Therefore, we
need the following notion: We say that a pseudo-effect algebra E has the differ-
ence compatibility property (DCP) for short, if a ↔ b, a ↔ c and b ≤ c imply
c ↔ c \ b. Every pseudo MV-algebra, or every horizontal sum of pseudo MV-
algebras, or every effect algebra, or any horizontal sum of the previous algebras
has (DCP).

This property for lattice-ordered pseudo-effect algebras is equivalent with the
following notion: pseudo-effect algebra E satisfies the compatibility complement
property (CCP) for short, if a ↔ b implies a ↔ 1 \ b; then also a ↔ b / 1.

We can now present the main result of the present section.

Theorem 4.1. Let E be a lattice-ordered pseudo-effect algebra with (DCP).
Then every block of E is a pseudo-effect subalgebra of E which is a pseudo MV-
algebra. Moreover, any such pseudo-effect algebra E is a set-theoretical union of its
blocks.

5. STATES ON PSEUDO-EFFECT ALGEBRAS
AND PSEUDO MV-ALGEBRAS

A state on a propositional system is connected with the intent of capturing the
notion of “average degree of truth” of a proposition, and it goes back to Boole’s
ideas (1967).

A state on a pseudo-effect algebra E is any mapping m : E → [0, 1] such that
m(1) = 1, and m(a + b) = m(a) + m(b) whenever a + b is defined in E . A state
on a unital po-group (G, u) is a mapping s : G → R such that (i) s(g1 + g2) =
s(g1) + s(g2) for all g1, g2 ∈ G, (ii) s(g) ≥ 0 for any g ≥ 0, and (iii) s(u) = 1.
If s is a state on (G, u), then m := s|�(G, u) is a state on �(G, u). Conversely,
if m is a state on �(G, u) for a unital po-group (G, u) satisfying (RDP1), then
by Theorem 2.1, m can be uniquely extended to a state s on (G, u) such that
m = s|�(G, u). Such a situation happens, for example, if E is a pseudo MV-
algebra. Denote by S(E) and Ext (S(E)) the set of all states on E and the set of
all extremal states on E . We note that if E is an interval effect algebra, then it
possesses at least one state. But even if M is a pseudo MV-algebra, then it can
happen that M possesses no state (Dvurečenskij, 2001). We have more information
on the state space for pseudo MV-algebras.

Let m be a state on a pseudo MV-algebra M , denote by Ker(m) := {a ∈ M :
m(a) = 0}. Then Ker(m) is a normal ideal4 of M , and on the quotient M/Ker(m) we
have that it is always an MV-algebra. In addition, m̃(a/Ker(m)) := m(a) (a ∈ M)
is a state on the MV-algebra M/Ker(m).

4 A non-void subset I of M is said to be an ideal of pseudo MV-algebra M if (i) x ⊕ y ∈ I whenever
x , y ∈ I , and (ii) if x ≤ y, x ∈ M and y ∈ I , then x ∈ I. An ideal I is said to be normal if x ⊕ I =
I ⊕ x for any x ∈ M.
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On the other hand, we can describe the set of all extremal states on M as
follows; for more details see (Dvurečenskij, 2001). Let m be an extremal state on
M . Then Ker(m) is always a normal maximal ideal of M , and conversely, for any
normal maximal ideal I there exists a unique extremal state m on M such that
I = Ker(m). Moreover, a state m is extremal iff m(a ∧ b) = min{m(a), m(b)} for
all a, b ∈ M . It is possible to show that any linearly ordered pseudo MV-algebra
possesses a (unique) state as well as any pseudo MV-algebra which is a subdi-
rect product of linearly ordered pseudo MV-algebras. Even every normal valued
pseudo MV-algebra (for definition see Dvurečenskij, 2001) possesses at least one
state.

For example, take M = �(G, u) from Example 3.1, and define a mapping m
on M by m((k, n, 0)) = 0 and m((k, n, 1)) = 1. Then m is a unique state on this
pseudo MV-algebra M which is not an MV-algebra (this is a normal valued pseudo
MV-algebra). In Example 3.2, M3 is a unique normal and maximal ideal of M ,
and there is a unique state-morphism m, namely m((ξ , α)) = log2(ξ ), (ξ , α) ∈ M .

If now E is a pseudo-effect algebra, then the investigation of the state space of
E is more complicated than that for pseudo MV-algebras. The problem is that it is
not easy to define ideals and quotient pseudo-effect algebras. The basic properties
of such states are given in (Dvurečenskij and Vetterlein, 2001c). We can only
add that if E possesses at least one state, then sometimes (for example if E is a
pseudo MV-algebra) it is possible to have an effect algebra E0 which is a quotient
of the pseudo-effect algebra E , i.e., E0 = E/I0, where I0 is an appropriate ideal
of E such that each induced state s̃ from E0 has the same value as s on E , i.e.
s̃(a/I0) = s(a) (a ∈ E) for any state s on E . In other words, if E is an interval
pseudo-effect algebra with a state s, then the non-commutative structure of the
original propositional system E can be eliminated by finding a (commutative)
effect algebra such that the statistical information remains.

6. CONCLUSION

We have presented elements of pseudo-effect algebras and of pseudo MV-
algebras. They are a generalization of effect algebras and MV-algebras by no
longer assuming the commutativity. We have shown how the algebraic structure
of pseudo-effect algebras implies a whole unital po-group. This is possible for
example if E satisfies a kind of the Riesz decomposition property. This Riesz-
type decomposition property is roughly speaking another kind of distributivity;
it is connected with refinements of decompositions of the unity. Every pseudo
MV-algebra is of this kind, and it is an interval in a unital �-group.

The partial operation + is connected with a state structure of propositions,
and it corresponds to original ideas of Boole (1967), who said that for statistical
information of the propositional system is only necessary to have a rule how we
can add probabilities of events.
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If we have a fixed pseudo-effect algebra E , we have shown when it is possible
to cover it by blocks. In such a case, a block is a maximal set of mutually compatible
elements of E which correspond to “classical” subpart of the propositional system.
In contrast to orthodox quantum structures, such a block is a pseudo MV-algebra,
and pseudo MV-algebras are analogues of Boolean algebras.

The existence of states on pseudo-effect algebras gives an opportunity for
performing a measuring process. As an important consequence of such a pos-
sibility is the fact that then we can substitute the whole statistical information
involved in E by the same statistical information concentrated on (commutative)
effect algebras. So we are able to find an ideal, i.e. a appropriate filter, which
kills the non-commutativity and which preserves a statistical information of the
original statistical information which can be influenced by a noise causing the
non-commutativity of the propositional system.

In the present, a pure quantum physical experiment which can be described by
non-commutative pseudo-effect algebras is not yet known, and it would be interest-
ing to have it. In any rate we have suggested an algebraical system which describe
a special kind of non-commutativity and which was inspired by our experience
with quantum structures.
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Dvurečenskij, A. and Vetterlein, T. (2001a). Pseudoeffect algebras. I. Basic properties. International
Journal of Theoretical Physics 40, 685–701.
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